Particle Swarm Optimization for Tackling Continuous Review Inventory Models

نویسندگان

  • Konstantinos E. Parsopoulos
  • Konstantina Skouri
  • Michael N. Vrahatis
چکیده

We propose an alternative algorithm for solving continuous review inventory model problems for deteriorating items over a finite horizon. Our interest focuses on the case of time–dependent demand and backlogging rates, limited or infinite warehouse capacity and taking into account the time value of money. The algorithm is based on Particle Swarm Optimization and it is capable of computing the number of replenishment cycles as well as the corresponding shortage and replenishment instances concurrently, thereby alleviating the heavy computational burden posed by the analytical solution of the problem through the Kuhn–Tucker approach. The proposed technique does not require any gradient information but cost function values solely, while a penalty function is employed to address the cases of limited warehouse capacity. Experiments are conducted on models proposed in the relative literature, justifying the usefulness of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified Particle Swarm Optimization for Solving Multi-Item Inventory Models with Supplier Selection

The multi-item inventory optimization problem with supplier selection is considered to be among the most interesting problems in Operations Research. Constraints such as limited capacity and defective items render the problem a demanding challenge for most solvers. Metaheuristic algorithms have been considered as promising approaches for tackling problems of this type. The present work investig...

متن کامل

Bi-product inventory planning in a three-echelon supply chain with backordering, Poisson demand, and limited warehouse space

In this paper, we apply continuous review (S-1, S) policy for inventory control in a three-echelon supply chain (SC) including r identical retailers, a central warehouse with limited storage space, and two independent manufacturing plants which offer two kinds of product to the customer. The warehouse of the model follows (M/M/1) queue model where customer demands follow a Poisson probabilit...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Optimization of the Inflationary Inventory Control Model under Stochastic Conditions with Simpson Approximation: Particle Swarm Optimization Approach

In this study, we considered an inflationary inventory control model under non-deterministic conditions. We assumed the inflation rate as a normal distribution, with any arbitrary probability density function (pdf). The objective function was to minimize the total discount cost of the inventory system. We used two methods to solve this problem. One was the classic numerical approach which turne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008